1. Given
$$A = \begin{bmatrix} 3 & 4 & 8 & 0 & 5 & 3 \\ 3 & 2 & -2 & 0 & 2 & 13 \\ 0 & -2 & -10 & 0 & -3 & 10 \\ 6 & 4 & -4 & 0 & 9 & 16 \end{bmatrix} \sim R = \begin{bmatrix} 1 & 0 & -4 & 0 & 0 & 7 \\ 0 & 1 & 5 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) Write the last column of A as a linear combination of the first five columns of A.
- (b) Find a basis for Col(A).
- (c) Find a basis for Row(A).
- (d) Find a basis for Nul(*A*).
- (e) What is the dimension of $Nul(A^T)$?
- 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that first performs the horizontal shear that sends the vector \mathbf{e}_2 to $-\mathbf{e}_1 + \mathbf{e}_2$ (leaving \mathbf{e}_1 unchanged), then reflects points through the *y*-axis, and then rotates points about the origin by $\frac{\pi}{2}$ radians in the *clockwise* direction. Find the standard matrix for T.
- 3. Given $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and det(A) = -3. Evaluate the following.
- (a) $\det \left(\begin{bmatrix} a/5 & b/5 & c/5 \\ g & h & i \\ a+4d & b+4e & c+4f \end{bmatrix} \right)$
- (b) $\det(2A^2A^T)$
- (c) $\det(A^{-1} + \operatorname{adj}(A))$
- 4. Let $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 6 \\ 4 & 6 & 1 \end{bmatrix}$.
- (a) Perform exactly one elementary row operation on A to get a *symmetric* matrix. (Call it B) (Reminder: Matrix B is symmetric if $B = B^T$)
- (b) Write *B* as the product, *EA*, where *E* is an elementary matrix.
- 5. Given X, B, and C are $n \times n$ matrices, solve the following equation for X. Assume any necessary matrices to be invertible.

$$(3X^{-1}B)^{-1} = C(X+B)$$

- 6. Let $A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 6 & 10 \\ -1 & 2 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$.
- (a) Determine A^{-1} .
- (b) Use your answer in part (a) to solve the matrix equation $A\mathbf{x} = \mathbf{b}$.

- 7. Determine a specific 3×4 matrix A that meets the following two conditions. Show the conditions are satisfied.
 - The dimension of Nul(A) is equal to the rank of A.

•
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \in \text{Nul}(A)$$

- 8. Given $S = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a^2 = d^2 \right\}$.
- (a) Does S contain the 2×2 zero matrix?
- (b) Is S closed under vector addition? Justify.
- (c) Is S closed under scalar multiplication? Justify.
- 9. Given $T: \mathbb{R}^3 \to \mathbb{R}$ defined by $T(\mathbf{u}) = \mathbf{u} \cdot \mathbf{u}$. Use specific vectors to show T is <u>not</u> a linear transformation.
- 10. Find the point on the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$ closest to the point (1, -3, -10).
- 11. Find a non-zero vector which is orthogonal to the plane that contains the points P(5,2,3), Q(6,0,3), and R(7,5,1).
- 12. Let \mathcal{P}_1 be the plane with equation 2x y + z = 3 and let \mathcal{P}_2 be the plane with equation x + y + 2z = 1.
- (a) Find a parametric vector equation for the line of intersection of planes \mathcal{P}_1 and \mathcal{P}_2 .
- (b) For what values a and b does the point (11, a, b) lie on this line of intersection?
- (c) Find an equation for the plane \mathcal{P}_3 that is parallel to \mathcal{P}_2 and passes through (1, 2, 3).
- (d) Find the distance between \mathcal{P}_2 and \mathcal{P}_3 .
- 13. Let $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ 8 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$.
- (a) Find the volume of the parallelepiped formed by vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} .
- (b) True or false: $\{u, v, w\}$ forms a basis for \mathbb{R}^3 .
- (c) Use your answer in part (a) to find the determinant of the matrix $\begin{bmatrix} 0 & 0 & 0 & 3 \\ 2 & 2 & 0 & 0 \\ -4 & 1 & 3 & 0 \\ 8 & 3 & 1 & 0 \end{bmatrix}$.
- 14. Fill in the blank with the word must, might, or cannot, as appropriate.
- (a) A system of linear equations with more equations than variables _____ have a unique solution.
- (b) If $\{u, v\}$ and $\{u, w\}$ are both linearly independent sets, then $\{v, w\}$ _____ be linearly independent.

(c) If A is a 3×3 matrix such that $A^3 = I$, then $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ form a basis for Col(A).

(d) If $\mathbf{u} \cdot \mathbf{v} \neq \mathbf{0}$, then vectors \mathbf{u} and \mathbf{v} ______ be parallel.

Answers

1. (a)
$$\begin{bmatrix} 3 \\ 13 \\ 10 \\ 16 \end{bmatrix} = 7 \begin{bmatrix} 3 \\ 3 \\ 0 \\ 6 \end{bmatrix} - 2 \begin{bmatrix} 4 \\ 2 \\ -2 \\ 4 \end{bmatrix} + 0 \begin{bmatrix} 8 \\ -2 \\ -10 \\ -4 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} - 2 \begin{bmatrix} 5 \\ 2 \\ -3 \\ 9 \end{bmatrix}$$
 (b)
$$\left\{ \begin{bmatrix} 3 \\ 3 \\ 0 \\ 6 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \\ -3 \\ 9 \end{bmatrix} \right\}$$

(c) $\{[1 \ 0 \ -4 \ 0 \ 0 \ 7], [0 \ 1 \ 5 \ 0 \ 0 \ -2], [0 \ 0 \ 0 \ 1 \ -2]\}$ (other answers exist)

(d)
$$\left\{ \begin{bmatrix} 4 \\ -5 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -7 \\ 2 \\ 0 \\ 0 \\ 2 \\ 1 \end{bmatrix} \right\}$$
 (e) 1

2.
$$\begin{bmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 & 1 + \sqrt{3} \\ \sqrt{3} & 1 - \sqrt{3} \end{bmatrix}$$

3. (a)
$$\frac{12}{5}$$
 (b) -216 (c) $\frac{8}{3}$

4. (a)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 6 \\ 4 & 6 & 1 \end{bmatrix} \xrightarrow{-2R_1 + R_2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 6 \\ 0 & 6 & 1 \end{bmatrix} = B$$
 (b)
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 6 \\ 4 & 6 & 1 \end{bmatrix}$$

5.
$$X = 3(B^{-1} - 3C)^{-1}CB$$

6. (a)
$$A^{-1} = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1/2 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$
 (b) $\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1/2 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ -5 \end{bmatrix}$

7.
$$A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (other answers exist)

8. (a) Yes (b) S is <u>not</u> closed under addition (c) S is closed under scalar multiplication

9. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$; $T(\mathbf{u}) = 0$, $T(\mathbf{v}) = 0 \rightarrow T(\mathbf{u}) + T(\mathbf{v}) = 0$ however $T(\mathbf{u} + \mathbf{v}) = 1$

10. (3, -6, -6)

11. (4, 2, 7)

12. (a)
$$\mathbf{x} = \begin{bmatrix} 4/3 \\ -1/3 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 (b) $a = 28/3 \\ b = -29/3$ (c) $x + y + 2z = 9$ (d) $\frac{4}{3}\sqrt{6}$

13. (a) $40 u^3$ (b) True (c) -120

14. (a) might (b) might (c) must (d) might