Mathematical Models 1

201-115 Fall 2009

Instructor: Bob DeJean

Final Examination

Please give numeric answers to 4 decimal places, except for accuracy/precision/significant digits questions.

1 mark questions

Calculate to the right accuracy:

$$\frac{16.03(0.0025)}{2.3} =$$

Write 0.66 rads in degrees

Calculate

$$e^{2.1} =$$

ln 0.0041 =

In -12 =

The waves in my waterbed have an amplitude of $5\,\mathrm{cm}$ and a frequency of $0.08\,\mathrm{Hz}$. What is their Angular Velocity?

2 mark questions

Write using simple logs

$$\ln\left(\frac{7x+3}{x^7}\right) =$$

Solve for x

$$5(3^{x+2}) = 10000$$

Find
$$x$$
:

$$\log x + \log(x + 1) = \log 90$$

A triangular sail, 4 m high and 1.5 m along the base, faces a wind machine some 20 m away. What solid angle (in steradians) does the sail make at the wind machine?

This diagram tries to show a 3-d box with a bump on one side. Some of its dimensions are marked. What is its Surface Area?

8cm

Solve for x and y:
$$3x - 2y = 26$$

 $4x + 5y = 27$

Set up the determinants to find y, but don't bother to work it out:

$$2x + 6y - 3z = 26$$

$$3x - 4y + 3z = -15$$

$$4x + 5y + 6z = 7$$

Calculate:

$$\begin{vmatrix} 3 & 0 & 6 \\ 1 & 8 & 2 \\ -2 & 4 & 1 \end{vmatrix} =$$

$$(4,-3)+(-8,7)=$$

A butterfly is trying to fly North at 0.7 m/s. But a gentle breeze pushes it West at 1.3 m/s. What is the magnitude and direction of its motion?

Find the limits

$$\lim_{x\to\infty}\frac{e^x-1}{x} =$$

$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 5x + 6} =$$

Here is the graph of a function. Is it continuous everywhere? If not, indicate where it is not continuous.

3 mark questions

The Town of Ste Anne's is thinking of putting a park on a triangle of land with sides of 75m, 56m and 48m. What is the angle at the smallest corner of the land?

Sketch the graph of y = 12 $sin(8t + \pi)$ Vertical Shift = Amplitude = Phase Shift = Period =

Solve for all possible values of X, an angle between 0 and 2π radians: 3 tan X + 4 = tan X

Calculate
$$(3+5j)(2-11j) =$$

$$\frac{12-5j}{2+3j} =$$

Write 17 cis 40° in rectangular form.

Write $17 \text{ cis } 40^{\circ} \text{ in exponential form.}$

Calculate:

$$(12 cis 45^{\circ}) (3 cis 55^{\circ}) =$$

$$(1.2 \text{ cis } 15^\circ)^5 =$$

Find the fourth roots of $81 cis 60^{\circ}$

A 50Ω resistor is in series with a 200 μFd capacitor. If a 60Hz current flows through them, what is their Impedance ?

Find the derivatives:

$$y = \frac{5}{x^2} - \frac{x^2}{5}$$

$$y = 3x\sin(2x)$$

$$y = \frac{3x^2 - 1}{2x + 5}$$

$$y = \left(6x - 7\right)^8 + 9$$

$$y = 3\cos(\sqrt{x})$$

$$y = \sqrt{4 - \tan 2x}$$

Find the equation of the line tangent to $y = 3x^3 - 3x$ at the point where x = 2

Find the slope of this curve at the point (1, 2): $7x + 5y = x^2y + 15$

What is the second derivative of $y = \frac{4}{3x-1}$?

4 mark question

Use the Limit Definition of Derivative to find the derivative of $y = 5x^2 - x + 4$ Show all the steps.

```
Answers
0.017 (2 sig digs)
21.56
37.81°
8.1661
-5.4968
sfa
0.5026
ln(7x + 3) - 7 ln x
4.9186
9 only
0.0075 steradians
998.26 cm<sup>2</sup>
x = 8 and y = -1
       26 - 3
    \begin{vmatrix} 3 & -15 & 3 \end{vmatrix}
     \begin{vmatrix} 3 & -4 & 3 \end{vmatrix}
120
(-4, 4)
1.4765 m/s at 28.28° North of West
infinity
6
Not continuous; circle breaks at -5 and 7
11.27 cm
39.76°
sine wave with VS = 0
       Amp = 12
       PS = -0.39
       Period = 0.785
116.57° and 296.57°
```

61 - 23j

$$(9 - 46j) / 13$$

$$13.02 + 10.92j$$

$$17e^{0.6981j}$$

$$36 \text{ cis } 100^{\circ}$$

$$2.4883 \text{ cis } 75^{\circ}$$

$$3 \text{ cis } 15^{\circ}, 3 \text{ cis } 105^{\circ}, 3 \text{ cis } 195^{\circ}, 3 \text{ cis } 285^{\circ}$$

$$50 - 13.26j \Omega$$

$$-10 x^{-3} - 2/5 x$$

$$3 \sin 2x + 6x \cos 2x$$

$$(6x^{2} + 30x + 2) / (2x + 5)^{2}$$

$$48 (6x - 7)^{7}$$

$$-\frac{3 \sin \sqrt{x}}{2\sqrt{x}}$$

$$-\frac{\sec^{2} 2x}{\sqrt{4 - \tan 2x}}$$

$$y = 33x - 48$$

$$-0.75$$

$$y'' = 72 (3x - 1)^{-3}$$

$$y' = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(5(x + h)^{2} - (x + h) + 4) - (5x^{2} - x + 4)}{h}$$

$$= \lim_{h \to 0} \frac{5x^{2} + 10xh + 5h^{2} - x - h + 4 - 5x^{2} + x - 4}{h}$$

 $= \lim_{h \to 0} \frac{10xh + 5h^2 - h}{h}$

 $= \lim_{h \to 0} 10x + 5h - 1$

=10x-1