1 Continuity

1. Use the definition of continuity to show that the function

$$f(x) = \begin{cases} 2x & \text{for } x \le 2\\ 3 & \text{for } x > 2 \end{cases}$$

is not continuous at x = 2.

2. The function f(x) is defined by

$$f(x) = \begin{cases} 2x & \text{for } x \le 1\\ 3 & \text{for } x > 1 \end{cases}$$

- (a) Sketch the graph of f(x).
- (b) Find $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-} f(x)$.
- (c) Is f(x) continuous at x = 1? Explain.
- 3. None of the following is continuous at x = 1. For each, state the condition for continuity that is not satisfied:

(a)
$$f(x) = \frac{x^2 - 1}{x - 1}$$

(b)
$$f(x) = \begin{cases} 2x & \text{for } x < 1\\ x^2 & \text{for } x \ge 1 \end{cases}$$

(c)
$$f(x) = \begin{cases} \sqrt{x} & \text{for } x \neq 1\\ 2 & \text{for } x = 1 \end{cases}$$

4. Using the definition of continuity, prove that the following function is continuous at x = -2:

$$f(x) = \begin{cases} \frac{x^2 - x - 6}{x + 2} & \text{if } x \neq -2 \\ -5 & \text{if } x = -2 \end{cases}$$

5. Determine a value for b which makes g(x) continuous.

$$g(x) = \begin{cases} bx & \text{if } x < 3\\ 6 & \text{if } x \ge 3 \end{cases}$$

6. If

$$f(x) = \begin{cases} 3x + 1 & \text{when } x < 2\\ 1 & \text{when } x = 2\\ 5 - x & \text{when } x > 2 \end{cases}$$

- (a) Sketch the graph of f(x).
- (b) Find (i) $\lim_{x \to 2^{-}} f(x)$ and (ii) $\lim_{x \to 2^{+}} f(x)$
- (c) Is f(x) continuous at x = 2? Explain.

7. If

$$f(x) = \begin{cases} 3+x & \text{if } x \le 1\\ 3-x & \text{if } x > 1 \end{cases}$$

- (a) Find $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-}$.
- (b) Does $\lim_{x \to 1} f(x)$ exist? Explain.
- (c) Is f(x) continuous at x = 1? Explain.
- 8. If

$$f(x) = \begin{cases} x^3 + 6 & \text{if } x < -1\\ x^3 + 4 & \text{if } x \ge -1 \end{cases}$$

Is f(x) continuous at x = -1? Explain.

9. Find values of a and c if f(x) is continuous at x = 4.

$$f(x) = \begin{cases} 2cx & \text{if } x < 4\\ x + a & \text{if } x = 4\\ x^2 - 6 & \text{if } x > 4 \end{cases}$$

10. Find the values of constants c and k that make f(x) continuous on $(-\infty, \infty)$

$$f(x) = \begin{cases} x + 2c & \text{if } x < -2\\ 3cx + k & \text{if } -2 \le x \le 1\\ 3x - 2k & \text{if } x > 1 \end{cases}$$

11. Let

$$f(x) = \begin{cases} 3x^2 - 2x + 4 & \text{if } x < -1 \\ -9x & \text{if } -1 \le x < 2 \\ 3x - 4 & \text{if } x > 2 \end{cases}$$

- (a) Prove f(x) is continuous at x = -1.
- (b) f(x) is discontinuous at x = 2. State which continuity property fails.
- 12. Find all real numbers c for which the function g(x) given by

$$g(x) = \begin{cases} x^2 & \text{if } x < \frac{1}{2} \\ c - x^2 & \text{if } x \ge \frac{1}{2} \end{cases}$$

is continuous at $x = \frac{1}{2}$.

13. Let

$$f(x) = \begin{cases} x^2 & \text{if } -1 \le x < 0 \text{ or } 0 < x \le 1\\ 1 & \text{if } x = 0\\ 2x - 1 & \text{if } x < -1 \text{ or } x > 1 \end{cases}$$

- (a) Discuss the continuity of f(x) at x = -1, 1, 0.
- (b) Sketch the graph of f(x).

14. Prove, using the definition of continuity, that

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2 \\ 7 & \text{if } x = 2 \end{cases}$$

is discontinuous at x = 2.

15. Find a value for the constant k that will make the functions continuous at the indicated value of x.

(a) At
$$x = 1$$

$$f(x) = \begin{cases} 7x - 2 & \text{if } x \le 1\\ kx^2 & \text{if } x > 1 \end{cases}$$

(b) At
$$x = 0$$

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$$

16. If

$$f(x) = \begin{cases} x+1 & \text{if } x \le 5 \\ 7-x & \text{if } x > 5 \end{cases}$$

prove, using the definition of continuity, that the function f(x) is discontinuous at x = 5.

17. If

$$g(x) = \begin{cases} 3x + 7 & \text{if } x \le 4\\ kx - 1 & \text{if } x > 4 \end{cases}$$

find the value of the constant k that makes the function g(x) continuous on $(-\infty, \infty)$.

18. If

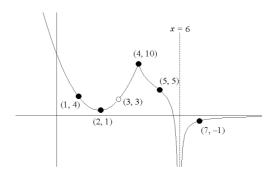
$$f(x) = \begin{cases} x^2 & \text{if } x < 0\\ x + 2 & \text{if } 0 \le x < 3\\ 2x - 1 & \text{if } x > 3 \end{cases}$$

- (a) Sketch the graph of f(x).
- (b) Find $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.
- (c) Find $\lim_{x\to 3^+} f(x)$ and $\lim_{x\to 3^-} f(x)$.
- (d) Is f(x) continuous at x = 0? Explain.
- (e) Is f(x) continuous at x = 3? Explain.

19. Find all values of x at which the following function is discontinuous. Support your answer with specific references to the definition of continuity.

$$f(x) = \begin{cases} \frac{4x}{x+1} & \text{if } x \le 1\\ 4-2x & \text{if } 1 < x \le 2\\ 3x-4 & \text{if } x > 2 \end{cases}$$

20. Discuss (a) the continuity, and (b) the differentiability, of the function whose graph appears below



21. (a) Is the function

$$f(x) = \begin{cases} x - 1 & \text{if } x \neq 2\\ 3 & \text{if } x = 2 \end{cases}$$

continuous at x = 2? Support your answer with a brief explanation.

- (b) Given f(x) = |x|
 - i. Is f continuous at x = 0? Why?
 - ii. Is f differentiable at x = 0? Why?

22. Sketch the graph of

$$f(x) = \begin{cases} 1+x & \text{if } x \le -1\\ 1+x^2 & \text{if } -1 < x < 2\\ 7-x & \text{if } x \ge 2 \end{cases}$$

For what values of x is f(x) not continuous? Give reasons for your answer.

23. State whether the following are TRUE or FALSE and justify your answer briefly:

- (a) The function $f(x) = \frac{x^3 x}{x}$ is continuous at x = 0.
- (b) The function $f(x) = \frac{x^3 x}{x}$ is continuous at x = 1
- (c) The function

$$f(x) = \begin{cases} x^3 + 2x & \text{if } x < -1 \\ |2x| - 5 & \text{if } x \ge -1 \end{cases}$$

is continuous at x = -1.

24. Let

$$f(x) = \begin{cases} x^2 + 2 & \text{if } x < 1\\ 4 - x & \text{if } x \ge 1 \end{cases}$$

- (a) Is this function continuous at x = 1?
- (b) Use the definition of continuity to justify your answer.

$$f(x) = \begin{cases} 2x+1 & \text{if} \quad x < 3\\ x+4 & \text{if} \quad x \ge 3 \end{cases}$$

- (a) Is f(x) continuous at x = 3? Reason?
- (b) Is f(x) differentiable at x = 3? Reason?

26. If

$$g(x) = \begin{cases} 4x - 1 & \text{if } x \le 2\\ x^2 + 1 & \text{if } x > 2 \end{cases}$$

- (a) Is g(x) continuous at x = 2? Reason?
- (b) Is g(x) differentiable at x = 2? Reason?
- 27. Discuss the continuity of the function

$$h(x) = \begin{cases} \frac{-1}{x+2} & \text{if } x \le -1\\ x^3 - 1 & \text{if } -1 < x \le 2\\ 9 - x & \text{if } x > 2 \end{cases}$$

28. Let

$$G(x) = \begin{cases} x^2 + 2x & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ \ln x & \text{if } x > 1 \end{cases}$$

- (a) Where is G(x) not continuous?
- (b) Where is G(x) not differentiable?

Answers:

1. The one-sided limits are different as we see below

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 2x = 4$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 3 = 3$$

Therefore $\lim_{x\to 2} f(x)$ does not exist. Hence f is not continuous at x=2.

2.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 3 = 3$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2x = 2$$

Therefore $\lim_{x\to 1} f(x)$ does not exist. Hence f is not continuous at x=1.

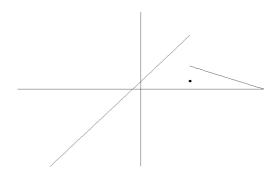
3. (a) f(1) is not defined.

- (b) $\lim_{x\to 1} f(x)$ does not exist since $\lim_{x\to 1^-} 2x = 2 \neq 1 = \lim_{x\to 1^+} x^2$
- (c) $\lim_{x \to 1} f(x) \neq f(1)$ since $2 \neq \sqrt{1}$.
- 4. (a) f(-2) = -5

(b)
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x + 2}$$
$$= \lim_{x \to -2} \frac{(x - 3)(x + 2)}{(x + 2)}$$
$$= \lim_{x \to -2} (x - 3) = -5$$

(c)
$$\lim_{x \to -2} f(x) = f(-2)$$

- 5. $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x)$ if $\lim_{x \to 3^{-}} bx = \lim_{x \to 3^{+}} 6$, i.e. if $b \cdot 3 = 6$. Therefore b = 2.
- 6. (a)



- (b) i. $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} (3x+1) = 7$ and ii. $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (5-x) = 3$ therefore $\lim_{x\to 2} f(x)$ does not exist, and so f is discontinuous at x=2.
- 7. $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (3 x) = 2 \text{ and}$ $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (3 + x) = 4$ therefore $\lim_{x \to 1} f(x) \text{ does not exist, and so } f$ is not continuous at x = 1.
- 8. $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (x^3 + 4) = 3$ and $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (x^3 + 6) = 5$ therefore $\lim_{x \to -1} f(x)$ does not exist, and so f is discontinuous at x = -1.
- 9. If f is continuous at x = 4 then

$$\lim_{x \to 4^{-}} f(x) = f(4) = \lim_{x \to 4^{+}} f(x)$$

Therefore

$$\lim_{x \to 4^{-}} 2cx = 4 + a = \lim_{x \to 4^{+}} (x^{2} - 6)$$

which yields

$$8c = 4 + a = 10$$

Thus $c = \frac{5}{4}$ and a = 6.

10. At
$$x = -2$$

$$\lim_{\substack{x \to -2^- \\ x \to -2^-}} f(x) = f(-2) = \lim_{\substack{x \to -2^+ \\ x \to -2^-}} f(x)$$

$$\lim_{\substack{x \to -2^- \\ 8c - k}} (x + 2c) = -6c + k = \lim_{\substack{x \to -2^+ \\ 6c + k}} (3cx + 2c)$$

Thus we obtain the equation

$$(1) 8c - k = 2$$

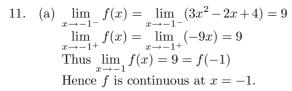
At x = 1

$$\lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$$
 (b) $k = 1$.
$$\lim_{x \to 1^{-}} (3cx + k) = 3c + k = \lim_{x \to 1^{+}} (3x - 2k) = \lim_{x \to 1^{+}} (3cx + k) = 3c + k = 3c +$$

Here we obtain

$$(2) \qquad 3c + 3k = 3$$

Now we need only solve the system of equation (1) and (2) to get the solution: $c = \frac{1}{3}, k = \frac{2}{3}.$

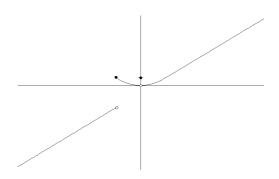


(b)
$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (-9x) = -18$$
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3x - 4) = 2$$
Thus
$$\lim_{x \to 2} f(x)$$
 does not exist and so f is not continuous at $x = 2$.

12.
$$\lim_{x \to \frac{1}{2}^{-}} f(x) = f(\frac{1}{2}) = \lim_{x \to \frac{1}{2}^{+}} f(x)$$

$$\lim_{x \to \frac{1}{2}^{-}} x^{2} = c - \frac{1}{4} = \lim_{x \to \frac{1}{2}^{+}} c - x^{2}$$
Which becomes $\frac{1}{4} = c - \frac{1}{4} = c - \frac{1}{4}$
Thus $c = \frac{1}{2}$.

- 13. (a) i. f is discontinuous at x = -1since $\lim_{x \to -1} f(x)$ does not exist.
 - ii. f is discontinuous at x = 0since $f(0) \neq \lim_{x \to 0} f(x)$.
 - iii. f is continuous at x = 1.

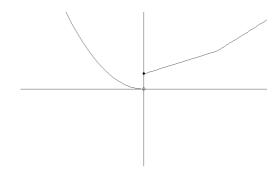


- 14. $\lim_{x \to 2} f(x) = 4 \neq 7 = f(2),$ therefore f is discontinuous at x=2.
- 15. (a) k = 5.

So
$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (x+1) = 6$$

$$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} (7-x) = 2$$
Thus
$$\lim_{x \to 5} f(x)$$
 does not exist and so f is not continuous at $x = 5$.

- 17. k = 5.
- 18. (a)



- (b) $\lim_{x \to 0^+} f(x) = 2$; $\lim_{x \to 0^-} f(x) = 0$
- (c) $\lim_{x \to 3^+} f(x) = 5$; $\lim_{x \to 3^+} f(x) = 5$
- (d) No, since $\lim_{x\to 0} f(x)$ does not exist.
- (e) No, since f(3) is not defined.
- 19. f is not continuous at x = -1since f has a vertical asymptote there. f is not continuous at x=2since $\lim_{x \to a} f(x)$ does not exist.
- 20. (a) Continuous everywhere except at x = 3 and x = 6.

- (b) Differentiable everywhere except at x = 3, x = 4, and x = 6.
- 21. (a) No, since $\lim_{x\to 2} f(x) = 1 \neq 3 = f(2)$.
 - (b) i. Yes, since $\lim_{x\to 0} f(x) = 0 = f(0)$.
 - ii. No, since $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$ does not exist. [To see this show that the left- and right-limits are different (-1 and 1).]
- 22. f is discontinuous at x = -1, since $\lim_{x \to -1} f(x)$ does not exist.
- 23. (a) No, since f(0) is not deined.
 - (b) Yes, since $\lim_{x\to 1} f(x) = 0 = f(1)$.
 - (c) Yes, since $\lim_{x \to -1} f(x) = -3 = f(-1)$.
- 24. (a) Yes.
 - (b) i. f(1) is defined and equals 3.
 - ii. $\lim_{x \to 1} f(x)$ exists and equals 3.
 - iii. Thus $\lim_{x \to 1} f(x) = f(1)$.
- 25. (a) Yes, since $\lim_{x\to 3} f(x) = 7 = f(3)$.
 - (b) No, since $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$ does not exist. [To see this show that the left- and right-limits are different (2 and 1).]
- 26. (a) No, since $\lim_{x\to 2} g(x)$ does not exist.
 - (b) No, since g is not continuous at x = 2.
- 27. h is not continuous at x = -2, since it has a vertical asymptote there. h is not continuous at x = -1, since $\lim_{x \to -1} h(x)$ does not exist. h is continuous everywhere else.
- 28. (a) G is not continuous at x = -1.
 - (b) G is not differentiable at x = -1 and x = 1.