Math - Calculus II

Determine whether the series is absolutely convergent, conditionally convergent or divergent. Justify your conclusions.

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$
; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^2}$

(2)
$$\sum_{n=1}^{\infty} \frac{2n}{5n-3}$$
; divergent by (N.T.T.); (3) $\sum_{n=1}^{\infty} \frac{1}{5+e^{-n}}$; divergent by (N.T.T.)

(4)
$$\sum_{n=1}^{\infty} \frac{1}{3^{2n}}$$
; absolutely convergent, use RootT or RatioT or G.S.

(5)
$$\sum_{n=1}^{\infty} \left[\left(\frac{2}{3} \right)^n + \left(\frac{3}{2} \right)^n \right]$$
; divergent the second G.S.

(6)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right)$$
; divergent by (N.T.T.)

(7)
$$\sum_{n=1}^{\infty} \frac{2}{n+2}$$
 ; divergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n}$

(8)
$$\sum_{n=1}^{\infty} \frac{1}{4(n+1)^2}$$
; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^2}$

(9)
$$\sum_{n=1}^{\infty} \left[\frac{1}{2n} + \left(-\frac{1}{2} \right)^n \right]$$
; first series is divergent, compare with $\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$

(10)
$$\sum_{n=2}^{\infty} \left[\frac{n}{\ln(n)} + \left(-\frac{2}{3} \right)^n \right]$$
; first series is divergent by (N.T.T.)

(11)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 ; absolutely convergent by RatioT

(12)
$$\sum_{n=1}^{\infty} \frac{1}{n \ 2^n}$$
 ; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{2^n}$ or use RatioT

(13)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
; absolutely convergent by RatioT; (14) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$; divergent by RatioT

(15)
$$\sum_{n=1}^{\infty} \frac{n!}{n^2}$$
 ; divergent by RatioT

(16)
$$\sum_{n=1}^{\infty} \frac{2}{2^n - 1}$$
; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{2^n}$ or use RatioT

(17)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$$
 ; divergent, compare with p-series $\sum_{n=1}^{\infty} \frac{1}{n^{1/5}}$

(18)
$$\sum_{n=1}^{\infty} \frac{|sec(n)|}{n}$$
; divergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n}$

(19)
$$\sum_{n=1}^{\infty} \frac{\left(\cos \frac{\pi}{n}\right) + 2}{3^n}$$
; absolutely convergent, compare with $3 \sum_{n=1}^{\infty} \frac{1}{3^n}$

(20)
$$\sum_{n=1}^{\infty} \frac{1}{(n^2+3)^{2/3}}$$
; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^{4/3}}$

(21)
$$\sum_{n=1}^{\infty} \frac{n^2}{4n^3+1}$$
 ; divergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n}$

(22)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+2}}$$
 ; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

(23)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{n^3+1}$$
 ; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$

(24)
$$\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$$
 ; divergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n}$

(25)
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n^2}$$
 ; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ or use I.T.

(26)
$$\sum_{n=2}^{\infty} \frac{1}{n (\ln(n))^{3/2}}$$
; absolutely convergent by I.T.

(27)
$$\sum_{n=1}^{\infty} n^2 e^{-n}$$
; absolutely convergent by RatioT or I.T.

(28)
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{(n-1)! 2^n}$$
; absolutely convergent by RatioT

(29)
$$\sum_{n=1}^{\infty} \operatorname{arctan}(n)$$
 ; divergent by (N.T.T.)

(30)
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$$
; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^2}$

(31)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^n$$
; divergent by (N.T.T.)

(32)
$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^{n-1}$$
 ; absolutely convergent by RatioT or by G.S.

(33)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n^2 + 1} \right)^n$$
; absolutely convergent by RootT

(34)
$$\sum_{n=1}^{\infty} \left(2^n + \frac{1}{2^n} \right)$$
 ; the first G.S. is divergent

(35)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{(n+1)(n+2)}$$
; conditionally convergent, compare with divergent series $\sum_{n=1}^{\infty} \frac{1}{n}$

(36)
$$\sum_{n=1}^{\infty} \frac{\cos\left(\frac{n\pi}{3}\right)}{n^3}$$
; absolutely convergent, compare with
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

(37)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n-1}}$$
; conditionally convergent, compare with divergent series $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$

(38)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n^2+1)}}$$
; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

(39)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{2^{n+1}}$$
; divergent by RatioT

$$(40) \quad \sum_{n=1}^{\infty} \ \frac{(-1)^n \ (2n+1)}{(n+2) \ \sqrt{n}} \quad ; \text{conditionally convergent, compare with divergent series} \quad \sum_{n=1}^{\infty} \ \frac{1}{\sqrt{n}}$$

$$(41) \quad \sum_{n=2}^{\infty} \ \frac{(-1)^n \ \sqrt{n+1}}{n-1} \quad ; \text{conditionally convergent, compare with divergent series} \quad \sum_{n=1}^{\infty} \ \frac{1}{\sqrt{n}}$$

(42)
$$\sum_{n=2}^{\infty} \frac{(-1)^{n+1} (n^2+1)}{n^3-1}$$

conditionally convergent, compare with divergent series $\sum_{n=1}^{\infty} \frac{1}{n}$

(43)
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^n}{n}$$
; divergent by RatioT

(44)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{\ln(n)}{n}$$
; conditionally convergent, compare with divergent series $\sum_{n=1}^{\infty} \frac{1}{n}$ or use I.T.

(45)
$$\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln(n)}$$
; conditionally convergent, $\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}$ diverges by I.T.

(46)
$$\sum_{n=2}^{\infty} (-1)^n \left(\frac{n-1}{n} \right)$$
; divergent by (N.T.T.)

(47)
$$\sum_{n=1}^{\infty} {n \choose \sqrt{n} - 1}^n$$
; absolutely convergent by RootT

(48) $\sum_{n=1}^{\infty} \frac{\arctan(n)}{n^2+1}$; absolutely convergent, compare with $\sum_{n=1}^{\infty} \frac{1}{n^2}$ or use I.T.