201-203-RE - Practice Set #20: Applications of Geometric Series

- (1) A deposit of 35 dollars is made at the beginning of each month, for a period of 4 years, in an account that pays 1.5% interest, compounded monthly. Find the balance in the account at the end of the 4 years.
- (2) The annual net profit for a company, from 1995 to 2005, can be approximated by the model $a_n = 10e^{0.2n}$, $n = 1, 2, 3, \dots, N$, where a_n is the annual net profit in millions of dollars, and n represents the year, with n = 1 corresponding to 1995. Estimate the total net profit during this period.
- (3) A deposit of 15 dollars is made at the beginning of each month, for a period of 5 years, in an account that pays 0.9% interest, compounded monthly. Find the balance in the account at the end of the 5 years.
- (4) A deposit of 20 dollars is made every 3 months, for a period of 10 years, in an account that pays 1% interest, compounded quarterly. Find the balance in the account at the end of the 10 years.
- (5) A deposit of \$500 can be made with two options: earn 2% interest, compounded quarterly for 3 years, or earn 1.5%, compounded monthly for 3 years. Find the balance after 3 years of both options.
- (6) A deposit of \$1200 can be made with two options: earn 1.6% interest, compounded every 2 months for 5 years, or earn 2.3% interest, compounded semi-anually for 5 years. Find the balance after 5 years of both options.
- (7) The annual net profit for a company, from 1995 to 2000, can be approximated by the model $a_n = 5e^{0.1n}$, with $n = 1, 2, 3, \dots, N$, where a_n is the annual net profit (in millions of dollars), and n represents the year, with n = 1 corresponding to 1995. Estimate the total net profit earned during this period.
- (8) To create a scholarship of \$600 that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 600e^{-0.05n}$ to determine the sum of money that has to be deposited in an account that earns 5% interest, compounded continuously. Find the amount of money that must be deposited.
- (9) To create a scholarship of \$1200 that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 1200e^{-0.03n}$ to determine the sum of money that has to be deposited in an account that earns 3% interest, compounded continuously. Find the amount of money that must be deposited.
- (10) A patient is given 50mg of a drug daily, for a long period of time. The amount of drug left in the patient's body after n years is given by $\sum_{k=1}^{n} 50e^{-k/2}$. Find the amount of drug in the patient's system after 4 years and after 15 years.
- (11) A deposit of 10 dollars is made at the beginning of each month, for a period of 6 years, into an account that pays 1% yearly interest, compounded 12 times per year. Find the bablance in the account at the end of the 6 years.
- (12) The annual net profit for a company, from 1997 to 2003, can be approximated by the model $a_n = 15e^{0.3n}$, with $n = 1, 2, 3, \dots, N$, where a_n is the annual net profit (in millions of dollars), and n represents the year, with n = 1 corresponding to 1997. Estimate the total net profit earned during this period.
- (13) A deposit of 30 dollars is made at the beginning of each month, for a period of 7 years, into an account that pays 1.1% yearly interest, compounded 12 times per year. Find the bablance in the account at the end of the 7 years.

- (14) The annual net profit for a company, from 1996 to 2001, can be approximated by the model $a_n = 6e^{0.05n}$, with $n = 1, 2, 3, \dots, N$, where a_n is the annual net profit (in millions of dollars), and n represents the year, with n = 1 corresponding to 1996. Estimate the total net profit earned during this period.
- (15) A deposit of 50 dollars is made bi-weekly, for a period of 8 years, into an account that pays 1.3% yearly interest, compounded every two weeks. Find the balance in the account at the end of the 8 years.
- (16) A deposit of \$700 can be made with two options: account A earns 1.8% yearly interest, compounded every two weeks, and account B earns 2.1% yearly interest, compounded monthly. The amount will stay in the account for a period of 4 years. What would the balance be after the 4 years, for both accounts?
- (17) A deposit of \$1500 can be made with two options: account A earns 1.4% yearly interest, compounded quarterly, and account B earns 1.9% yearly interest, compounded monthly. The amount will stay in the account for a period of 6 years. What would the balance be after the 6 years, for both accounts?
- (18) To create a scholarship of \$750 that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 750e^{-0.04n}$ to determine the sum of money that has to be deposited in an account that earns 4% interest, compounded continuously. Find the amount of money that must be deposited.
- (19) To create a scholarship of \$1500 that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 1500e^{-0.035n}$ to determine the sum of money that has to be deposited in an account that earns 3.5% interest, compounded continuously. Find the amount of money that must be deposited.
- (20) A patient is given 40mg of a drug daily, for a long period of time. The amount of drug left in the patient's body after n years is given by $\sum_{k=1}^{n} 40e^{-k/5}$. Find the amount of drug in the patient's system after 6 years and after 20 years.

In problems 21 - 34, geometric series to write the following repeating decimals as fractions.

- $(21) \ 4.\overline{13}$ $(23) \ 3.\overline{09}$ $(25) \ 5.\overline{011}$ $(27) \ 7.3\overline{4}$ $(29) \ 1.\overline{06}$ $(31) \ 8.\overline{01}$
- $(22) \ 6.\overline{04} \qquad (24) \ 2.\overline{02} \qquad (26) \ 10.2\overline{3} \qquad (28) \ 20.0\overline{21} \quad (30) \ 2.\overline{03} \qquad (32) \ 2.\overline{22} \qquad (34) \ 12.30\overline{2}$
- (35) Valery would like to save \$1 400 000 for her retirement. Her account has an annual interest rate of 2.7%, compounded semi-annually. If Valery wants to retire in 40 years, how much should she be saving semi-annually?

 $(33) \ 5.\overline{25}$

- (36) When she retires, Liu Zhang purchases an annuity which pays her \$ 3 000 per month for 40 years. If the annuity earns 3.1% interest compounded monthly, what was the initial value of the investment?
- (37) Sobolev would like to buy a \$20 000 car, but he cannot afford to do so outright. He goes on the automaker's website and sees that he can expect to finance it at 3.5% interest compounded twice a month. If he chooses to finance the car for a six year term, what will his payments be, if he is paying twice per month?
- (38) Suzana would like to save a \$40 000 down payment for a house. If she can invest at 1.6% interest compounded weekly over ten years, how much should she save each week?

- (39) Lewis-Charles is at the car dealership and is being told his new car will cost him \$1000 every two months for four years. If he financed at 0.9% interest compounded every two months, how much is the car (not including interest)?
- (40) Chef Tony bought a commercial building that is worth \$3 000 000. He finances it on a 25 year term at 3.2% annual interest compounded semi-annually. What is his mortgage payment every 6 months?
- (41) Jennifer wants to save \$15 000 for a new car in eight years. If she can save at 1.1% interest compounded monthly, what should be her monthly deposit?
- (42) Ichiban has \$1 800 000 saved when he retires. He uses all that money to purchase an annuity earning 2.6% interest compounded every two weeks that will pay him a lump sum every two weeks for 30 years. How much will he receive every two weeks?

ANSWERS:

(1)	\$1732.47	(15)	\$10 962.64	(29)	35/33
(2)	\$442.712 millions	(16)	\$752.24 or \$761.28	(30)	67/33
(3)	\$920.89	(17)	\$1631.20 or \$1680.98	(31)	793/99
(4)	\$842.36	(18)	\$18 377.50	(32)	20/9
(5)	\$530.84 or \$523.00	(19)	\$42 111.52	(33)	520/99
(6)	\$1299.81 or \$1345.36	(20)	$126.25\mathrm{mg}$ and $177.36\mathrm{mg}$	(34)	2768/225
(7)	\$43.195 millions	(21)	409/99	(35)	\$9695.05
(8)	\$11 702.50	(22)	598/99	(36)	\$824 693.47
(9)	\$39 403.00	(23)	34/11	(37)	\$154.08
(10)	66.64mg and 77.03 mg	(24)	200/99	(38)	\$70.92
(11)	\$742.34	(25)	5006/999	(39)	\$23 555.79
(12)	\$414.738 millions	(26)	307/30	(40)	\$87 620.56
(13)	\$2620.71	(27)	661/90	(41)	\$149.41
(14)	\$43.041 millions	(28)	6607/330	(42)	\$3 324.62