- 1. Let $\mathbf{u_1} = (3, -1, 2)$ and $\mathbf{u_2} = (3, 1, 5)$.
 - (a) Express the vector $\mathbf{v} = (9, 11, 27)$ as a linear combination of $\mathbf{u_1}$ and $\mathbf{u_2}$ if possible.
 - (b) Find k such that the vector $\mathbf{w} = (-5, 4, k)$ is a linear combination of $\mathbf{u_1}$ and $\mathbf{u_2}$.

2. Let
$$\mathbf{a}_1 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 9 \\ -3 \\ 5 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 7 \\ 6 \\ h \end{bmatrix}$.

- (a) Find h so that \mathbf{b} is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.
- (b) For the h that you found in the previous part, express \mathbf{b} as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 .
- 3. Let $\mathbf{b}_1 = (h, 5, 7)$, $\mathbf{b}_2 = (-1, 3, 7)$, and $\mathbf{b}_3 = (1, 1, 2)$. Find h so that $\mathbf{b}_3 \in \operatorname{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$.
- 4. (a) Express the plane x 3y + 4z = 0 as a span of vectors.
 - (b) Express the intersection of the two planes x-3y+4z=0 and 2x+z=0 as a span of vectors.
- 5. Find an equation of the plane in form Ax + By + Cz = D that is spanned by the vectors (2, 3, -1) and (4, 1, 5).
- 6. Let $\mathbf{u_1} = (2, 0, 3, -1)$, $\mathbf{u_2} = (-4, 0, -6, 2)$, $\mathbf{u_3} = (5, 5, 0, 3)$, $\mathbf{u_4} = (1, 3, -6, 5)$, $\mathbf{0} = (0, 0, 0, 0)$.

Determine whether each set is linearly independent or linearly dependent.

- (a) $\{u_1\}$
- (b) $\{u_1, u_2\}$
- (c) $\{u_1, u_2, u_3\}$
- (d) $\{u_2, u_3, u_4\}$
- (e) $\{u_3, u_4\}$
- (f) $\{u_3, u_4, 0\}$
- 7. Let $\mathbf{u_1} = (5, 2, -1, 6)$, $\mathbf{u_2} = (3, 1, 0, 2)$, $\mathbf{u_3} = (1, 1, -2, 6)$, $\mathbf{u_4} = (1, 1, -2, 1)$, $\mathbf{u_5} = (1, 0, 0, 0)$.

Determine whether each set is linearly independent or linearly dependent.

- (a) $\{u_1, u_2\}$
- (b) $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$
- (c) $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$
- (d) $\{u_2, u_3, u_4, u_5\}$
- (e) $\{u_3, u_4, u_5\}$
- (f) $\{u_5\}$

8. Let $\mathbf{u_1} = (2, 3, -1,), \ \mathbf{u_2} = (5, 4, -1), \ \mathbf{u_3} = (5, -3, 2), \ \mathbf{u_4} = (0, 6, -2), \mathbf{u_5} = (0, -15, 5).$

Determine whether each set is linearly independent or linearly dependent. In each case, state whether the span of the set is a point, line, plane, or \mathbb{R}^3 .

- (a) $\{\mathbf{u}_1, \mathbf{u}_2\}$
- (b) $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$
- (c) $\{\mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$
- (d) $\{\mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$
- (e) $\{\mathbf{u}_4, \mathbf{u}_5\}$
- 9. Let $\mathbf{u_1} = (0, -5, 5,)$, $\mathbf{u_2} = (0, 3, -3)$, $\mathbf{u_3} = (1, 1, 1)$, $\mathbf{u_4} = (1, 0, 1)$, $\mathbf{u_5} = (2, 2, 0)$, and $\mathbf{0} = (0, 0, 0)$.

Determine whether each set is linearly independent or linearly dependent. (LI or LD?) In each case, state whether the span of the set is a point, line, plane, or \mathbb{R}^3 .

- (a) $\{u_1\}$
- (b) $\{\mathbf{u}_1, \mathbf{u}_2\}$
- (c) $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$
- (d) $\{\mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$
- (e) $\{\mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$
- (f) $\{\mathbf{u}_4, \mathbf{u}_5\}$
- (g) $\{\mathbf{u}_4, \mathbf{u}_5, \mathbf{0}\}$
- (h) $\{0\}$
- 10. Determine if the following sets are subspaces. For those that are, express the set as a span of vectors. For those that are not, provide a counter-example to show it is not closed under VA or SM.

(a)
$$S = \{(x, y, z) \in \mathbb{R}^3 | x = 4s - t, y = s + 3t, z = 6s \}$$

- (b) $S = \{(x, y, z) \in \mathbb{R}^3 | 3x + 4y z = 2\}$
- (c) $S = \{(x, y, z) \in \mathbb{R}^3 | z^2 = xy\}$
- (d) $S = \{(x, y, z) \in \mathbb{R}^3 | x + 2y 3z = 0\}$
- (e) $S = \{(x, y, z) \in \mathbb{R}^3 | y \ge x\}$
- (f) $S = \{(x, y) \in \mathbb{R}^2 | x = 4 + 2t, y = -6 3t \}$
- (g) $S = \{(x, y, z) \in \mathbb{R}^3 | y + z \ge -1 \}$
- (h) $S = \{(x, y, z) \in \mathbb{R}^3 | z = 2x 3y\}$

(i)
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid xy + z = 0 \right\}$$

(j)
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid 2x = y - z \right\}$$

(k)
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \middle| x = 6t, y = 4t \text{ some } t \in \mathbb{R} \right\}$$

11. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.

- (a) Express a_3 as linear combinations of a_1 and a_2 if possible.
- (b) Is $\{a_1\}$ a basis for \mathbb{R}^2 ? Why or why not?
- (c) Is $\{a_1, a_2, a_3\}$ a basis for \mathbb{R}^2 ? Why or why not?
- (d) Is $\{a_2, a_3\}$ a basis for \mathbb{R}^2 ? Why or why not?
- 12. Let $\mathbf{u_1} = (4, 2, 5), \mathbf{u_2} = (3, -1, -2), \text{ and } \mathbf{u_3} = (6, 2, 0)$
 - (a) Is $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ a basis for \mathbb{R}^3 ? Justify.
 - (b) Is it possible to express u₃ as a linear combination of u₁ and u₂? Justify without solving.
 - (c) Is it possible to express the vector (9, 5, 2) as a linear combination of $\mathbf{u_1}$, $\mathbf{u_2}$, and $\mathbf{u_3}$? Justify without solving.

13. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

- (a) Is \mathbf{v} in Nul(A)? Justify your answer.
- (b) Is \mathbf{v} in Col(A)? Justify your answer.

14. Let
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$.

- (a) Find a basis for Col(A).
- (b) Find a basis for Nul(A).
- (c) Is \mathbf{v}_1 in Nul(A)? Justify your answer.
- (d) Is \mathbf{v}_1 in $\operatorname{Col}(A)$? Justify your answer.
- (e) Is \mathbf{v}_2 in Nul(A)? Justify your answer.
- (f) Is \mathbf{v}_2 in Col(A)? Justify your answer.

15. Let
$$\mathbf{a_1} = (2, 3, -1, 1)$$
, $\mathbf{a_2} = (-2, -3, 1, -1)$, $\mathbf{a_3} = (2, 3, 1, 5)$, $\mathbf{a_4} = (2, 3, 2, 7)$, $\mathbf{a_5} = (4, 6, 3, 12)$. Find a basis for $S = \mathrm{Span}\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}, \mathbf{a_4}, \mathbf{a_5}\}$.

16. The matrix
$$A = \begin{bmatrix} 2 & -6 & 5 & 3 & -8 & 18 \\ -3 & 9 & -1 & -5 & -1 & -36 \\ 0 & 0 & 4 & 8 & -8 & 36 \end{bmatrix}$$
 has reduced form $R = \begin{bmatrix} 1 & -3 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 1 & 0 & 5 \end{bmatrix}$.

- (a) Choose a basis for Col(A) from the columns of A.
- (b) Choose a basis for Nul(A).

17. The matrix
$$A = \begin{bmatrix} 5 & 4 & 1 & 0 & 1 & 13 \\ 4 & 5 & -1 & 0 & 1 & 14 \\ -4 & -4 & 0 & 0 & 0 & -12 \\ 3 & 2 & 1 & 0 & 1 & 7 \end{bmatrix}$$

$$\text{reduces to } R = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) Choose a basis for Col(A) from the columns of A.
- (b) Choose a basis for Nul(A).

18. The matrix
$$A = \begin{bmatrix} 6 & -9 & 2 & -12 & 1 & 8 \\ -6 & 9 & 5 & 54 & 2 & -1 \\ 8 & -12 & 1 & -26 & 0 & 9 \\ 0 & 0 & 3 & 18 & 3 & 3 \end{bmatrix}$$

$$\text{reduces to } R = \begin{bmatrix} 1 & -3/2 & 0 & -4 & 0 & 1 \\ 0 & 0 & 1 & 6 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Let $a_1, a_2, a_3, a_4, a_5, a_6$ be the columns of A.

- (a) Choose a basis for Col(A) from the columns of A.
- (b) Express each column of A that is not in your basis as a linear combination of your basis vectors.
- (c) Find a basis for Nul(A)

19. The matrix
$$\begin{bmatrix} 3 & 3 & a & c & 1 & e \\ b & 2 & -8 & 6 & f & 15 \\ 0 & d & 0 & 2 & 1 & 6 \end{bmatrix}$$
has reduced form
$$\begin{bmatrix} 1 & 0 & 4 & -1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$
.

Find a, b, c, d, e, and f.

20. The matrix
$$\begin{bmatrix} 2 & a & 5 & 3 & b & c \\ d & 9 & e & -5 & -1 & -36 \\ 0 & 0 & 4 & f & -8 & 36 \end{bmatrix}$$
 has reduced form
$$\begin{bmatrix} 1 & -3 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 1 & 0 & 5 \end{bmatrix}$$
. Find a,b,c,d,e , and f .

21. Suppose A is $n \times m$, Dim(Col(A)) = 2, Dim(Nul(A)) = 3 and $Dim(Nul(A^T)) = 4$. Find n and m.

22. Suppose A is an 5×8 matrix.

(a) What is the minimum nullity of A?

(b) Can the system $A\mathbf{x} = \mathbf{0}$ have a unique solution?

(c) What is minimum nullity of A^T ?

(d) Can the system $A^T \mathbf{x} = \mathbf{0}$ have a unique solution?

23. Suppose A is a 6×4 matrix, and that the nullity of A^T is 3.

(a) Find the nullity of A.

(b) Does the system Ax = 0 have a unique solution?

(c) Are the columns of A linearly independent?

24. Suppose A is 5×3 and the general solution to the equation

$$A\mathbf{x} = \mathbf{b}$$
 is given by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + \mathbf{s} \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix} + \mathbf{t} \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$.

(a) Find the general solution to $A\mathbf{x} = \mathbf{0}$.

(b) Find the rank of A.

25. Suppose $\operatorname{Nul}(A) = \operatorname{Span} \left\{ \begin{bmatrix} -3 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} \right\}$ for a matrix A,

and that $\mathbf{u} = \begin{bmatrix} 6 \\ -1 \\ 2 \end{bmatrix}$ is one particular solution to $A\mathbf{x} = \mathbf{b}$.

What is the general (parametric) solution to $A\mathbf{x} = \mathbf{b}$?

26. Suppose the general solution to $A\mathbf{x} = \mathbf{b}$ is given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}.$$

(a) Find a non-zero solution to the homogeneous equation $A\mathbf{x} = \mathbf{0}$

(b) Find the general solution to $A\mathbf{x} = 2\mathbf{b}$. (Hint: $A(2\mathbf{x})=2(A\mathbf{x})$.)

27. Let
$$\mathbf{u} = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 5\\0\\1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 6\\-4\\3 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} x\\y\\z \end{bmatrix}$.

Suppose A is 7×3 , and that $Nul(A) = Span\{u, v\}$.

(a) Find the nullity of A.

(b) Find the rank of A.

(c) Give the general solution of $A\mathbf{x} = \mathbf{0}$ in parametric form.

(d) Give the general solution of $A\mathbf{x} = A\mathbf{w}$ in parametric form.

ANSWERS ON NEXT PAGE.

ANSWERS:

- 1. (a) $\mathbf{v} = -4\mathbf{u_1} + 7\mathbf{u_2}$.
 - (b) k = 1/6.
- 2. (a) h = 5.
 - (b) $\mathbf{b} = \frac{5}{3}\mathbf{a}_1 \frac{1}{3}\mathbf{a}_2$.
- 3. h = 17.
- 4. (a) The plane is given by Span $\left\{ \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} \right\}$.
 - (b) The line is given by Span $\left\{ \begin{bmatrix} -1/2 \\ 7/6 \\ 1 \end{bmatrix} \right\}$.
- 5. 8x 7y 5z = 0 or any non-zero multiple.
- 6. (a) LI.
- 7. (a) LI.
- (b) LD.
- (b) LD.
- (c) LD.
- (c) LD.
- (d) LI.

(d) LI.

(e) LI.

- (e) LI.
- (f) LD.
- (f) LI.
- 8. (a) LI. Plane.
- 9. (a) LI. Line.
- (b) LD. Plane.
- (b) LD. Line.
- (c) LI. \mathbb{R}^3 .
- (c) LD. Plane
- (d) LD. \mathbb{R}^3 .
- (d) LI. \mathbb{R}^3 .
- (e) LD. Line.
- (e) LD. \mathbb{R}^3 .
- (f) LI. Plane.
- (g) LD. Plane
- (h) LD. Point.
- 10. (a) Yes. $S = \text{Span} \left\{ \begin{bmatrix} 1 \\ 6 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\}$
 - (b) No. Not closed under VA or SM. C-E: Let $\mathbf{u} = (1, 0, 1)$. $\mathbf{u} \in S$, but $2\mathbf{u} = \mathbf{u} + \mathbf{u} \notin S$.
 - (c) No. Not closed under VA. C-E: Let $\mathbf{u} = (1,0,0)$. Let $\mathbf{v} = (0, 1, 0)$. The vectors \mathbf{u} and \mathbf{v} are in S, but $\mathbf{u} + \mathbf{v} = (1, 1, 0) \notin S$.
 - (d) Yes. $S = \text{Nul} \begin{bmatrix} 1 & 2 & -3 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\}$
 - (e) No. S is not closed under SM. C-E: Let $\mathbf{u} = (0, 1, 0)$ and k = -1. The vector $\mathbf{u} \in S$, but $k\mathbf{u} = -1(0, 1, 0) = (0, -1, 0) \notin S$.

- (f) Yes. $S = \text{Span}\{(2, -3)\}.$
- (g) No. Not closed under SM or VA. C-E: Let $\mathbf{u} = (0, 0, -1)$ and k = 2. The vector $\mathbf{u} \in S$, but $k\mathbf{u} = \mathbf{u} + \mathbf{u} \notin S$.
- (h) Yes. $S = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \right.$
- (i) No. Not closed under SM or VA. C-E: Let $\mathbf{u} = (1, 1, -1)$ and k = 2. The vector $\mathbf{u} \in S$, but $k{\bf u}={\bf u}+{\bf u}=(2,2,-2)\notin S.$
- (j) Yes. $S = \text{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$.
- (k) Yes. $S = \operatorname{Span} \left\{ \begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$
- 11. (a) $\mathbf{a}_3 = \frac{7}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2$.
 - (b) No, since $\operatorname{Span}\{\mathbf{a}_1\} \neq \mathbb{R}^2$. (Takes at least two vectors...)
 - (c) No, since $\{a_1, a_2, a_3\}$ is linearly dependent. (...and no more than two.)
 - (d) Yes, since $\{a_2, a_3\}$ is linearly independent and spans \mathbb{R}^2 .
- 12. (a) Yes, since $\begin{vmatrix} 1 & 0 & 0 \\ 2 & -1 & 2 \\ 5 & -2 & 0 \end{vmatrix} \neq 0$.
 - (b) No, since $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is linearly independent.
 - (c) Yes, since Span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \mathbb{R}^3$.
- 13. (a) No. $Av \neq 0$.
 - (b) Yes. $A\mathbf{x} = \mathbf{v}$ is consistent.
- 14. Let $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$.

 - (a) $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$
 - (c) Yes, A**v** $_1 =$ **0**.
 - (d) Yes, $\mathbf{v}_1 = 2\mathbf{a}_1$, double the first column of A.
 - (e) Yes, $A\mathbf{v}_2 = \mathbf{0}$.
 - (f) No, $A\mathbf{x} = \mathbf{v}_2$ has no solution.
- 15. Basis for S: $\left\{ \begin{vmatrix} 3 \\ -1 \end{vmatrix}, \begin{vmatrix} 3 \\ 1 \end{vmatrix} \right\}$.

16. (a) Basis for
$$\operatorname{Col}(A)$$
: $\left\{ \begin{bmatrix} 2\\-3\\0 \end{bmatrix}, \begin{bmatrix} 5\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\-5\\8 \end{bmatrix} \right\}$

(b) Basis for Nul(A):
$$\left\{ \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 1 \\ -5 \\ 0 \\ 1 \end{bmatrix} \right\}$$

17. (a) Basis for
$$\operatorname{Col}(A)$$
: $\left\{ \begin{bmatrix} 5\\4\\-4\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\-4\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} \right\}$

(b) Basis for
$$\operatorname{Nul}(A) : \left\{ \begin{bmatrix} -1\\1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\-2\\0\\0\\0\\1 \end{bmatrix} \right\}.$$

18. (a) Basis for $Col(A) : {\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5}.$

(b)
$$\mathbf{a}_2 = -\frac{3}{2}\mathbf{a}_1, \mathbf{a}_4 = -4\mathbf{a}_1 + 6\mathbf{a}_3, \mathbf{a}_6 = \mathbf{a}_1 + \mathbf{a}_3.$$

(c) Basis for
$$\operatorname{Nul}(A)$$
: $\left\{ \begin{bmatrix} 3/2\\1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\0\\-6\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\-1\\0\\0\\1 \end{bmatrix} \right\}$.

19.
$$(a, b, c, d, e, f) = (12, -2, 3, 1, 16, 5).$$

20.
$$(a, b, c, d, e, f) = (-6, -8, 18, -3, -1, 8).$$

21.
$$n = 6, m = 5.$$

22. (a) Max Rank of
$$A = 5$$
, so Min Nullity of $A = 8 - 5 = 3$.

(b) No. Solution must have at least 3 parameters.

(c) Min Nullity of
$$A^T$$
 is 0.

(d) Yes. Solution is unique when Nullity of A is 0.

(b) No. There will be one parameter in the solution.

(c) No. There is a non-trivial solution to Ax = 0.

24. (a)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = s \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

(b) Rank of A = 1.

25.
$$\begin{cases} x = 6 - 3s + 5t \\ y = -1 + 4s \\ z = 2 + 2s + t \end{cases}$$

26. (a) (x, y, z) = (1, 0, -2), for example when s = 1 and t = 0.

(b)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}.$$

27. (a) 2.

(c)
$$\begin{cases} x = -2s + 5t \\ y = s \\ z = t \end{cases}$$

(d)
$$\begin{cases} x = 6 - 2s + 5 \\ y = -4 + s \\ z = 3 + t \end{cases}$$